Processing of Communication Calls in Guinea Pig Auditory Cortex
نویسندگان
چکیده
Vocal communication is an important aspect of guinea pig behaviour and a large contributor to their acoustic environment. We postulated that some cortical areas have distinctive roles in processing conspecific calls. In order to test this hypothesis we presented exemplars from all ten of their main adult vocalizations to urethane anesthetised animals while recording from each of the eight areas of the auditory cortex. We demonstrate that the primary area (AI) and three adjacent auditory belt areas contain many units that give isomorphic responses to vocalizations. These are the ventrorostral belt (VRB), the transitional belt area (T) that is ventral to AI and the small area (area S) that is rostral to AI. Area VRB has a denser representation of cells that are better at discriminating among calls by using either a rate code or a temporal code than any other area. Furthermore, 10% of VRB cells responded to communication calls but did not respond to stimuli such as clicks, broadband noise or pure tones. Area S has a sparse distribution of call responsive cells that showed excellent temporal locking, 31% of which selectively responded to a single call. AI responded well to all vocalizations and was much more responsive to vocalizations than the adjacent dorsocaudal core area. Areas VRB, AI and S contained units with the highest levels of mutual information about call stimuli. Area T also responded well to some calls but seems to be specialized for low sound levels. The two dorsal belt areas are comparatively unresponsive to vocalizations and contain little information about the calls. AI projects to areas S, VRB and T, so there may be both rostral and ventral pathways for processing vocalizations in the guinea pig.
منابع مشابه
Coding of communication calls in the subcortical and cortical structures of the auditory system.
The processing of species-specific communication signals in the auditory system represents an important aspect of animal behavior and is crucial for its social interactions, reproduction, and survival. In this article the neuronal mechanisms underlying the processing of communication signals in the higher centers of the auditory system--inferior colliculus (IC), medial geniculate body (MGB) and...
متن کاملMorphometrical Study of the Temporal Bone and Auditory Ossicles in Guinea Pig
In this research, anatomical descriptions of the structure of the temporal bone and auditory ossicles have been performed based on dissection of ten guinea pigs. The results showed that, in guinea pig temporal bone was similar to other animals and had three parts; squamous, tympanic and petrous .The tympanic part was much better developed and consisted of oval shaped tympanic bulla with many re...
متن کاملResponses in the inferior colliculus of the guinea pig to concurrent harmonic series and the effect of inactivation of descending controls.
One of the fundamental questions of auditory research is how sounds are segregated because, in natural environments, multiple sounds tend to occur at the same time. Concurrent sounds, such as two talkers, physically add together and arrive at the ear as a single input sound wave. The auditory system easily segregates this input into a coherent perception of each of the multiple sources. A commo...
متن کاملResponses in the Inferior Colliculus of the Guinea Pig to Concurrent 4 harmonic series and the effect of Inactivation of Descending 5 Controls
21 One of the fundamental questions of auditory research is how sounds are segregated, since, in 22 natural environments, multiple sounds tend to occur at the same time. Concurrent sounds, such as two 23 talkers, physically add together and arrive at the ear as a single input sound wave. The auditory system 24 easily segregates this input into a coherent percept of each of the multiple sources....
متن کاملCortical Representation of Species-Specific Vocalizations in Guinea Pig
We investigated the representation of four typical guinea pig vocalizations in the auditory cortex (AI) in anesthetized guinea pigs with the aim to compare cortical data to the data already published for identical calls in subcortical structures - the inferior colliculus (IC) and medial geniculate body (MGB). Like the subcortical neurons also cortical neurons typically responded to many calls w...
متن کامل